Casio MX-10 MSX1 Computer
The Casio MX-10 MSX1 computer was introduced as the successor of the PV-16 with as goal: how small can we go.
In order to reduce the size of the computer, the tape interface was removed. This goes against the MSX standard, so Casio provided the FA-32 or FA-33 CMT I/F package that provided the computer with a tape interface.
Another goal for this computer was to lower the price point. MSX2 computers were coming out, creating a downward push on the price of MSX1 computers. The MX-10 had a cheap chicklet keyboard with rubber keys that made typing a crime.
By adding the KB-10 expansion unit, two cartridge ports and a printer port could be added to the computer.
The MX-10 was produced for the Japanese market, and for the international market Casio produced the MX-15
MSX was announced by Microsoft and the ASCII Corporation on June 16th 1983. It was marketed by Kasuhiko Nishi, who was Vice-President at Microsoft and a director at the ASCII Corporation. MSX was an attempt to create a hardware and software standard among various home computers, similar to what VHS had accomplished for the Home Video market.
The MSX Standard defines specifications for:- CPU and Memory
- Video Output hardware
- Audio hardware
- Cassette and Disk drives
- Keyboard, mouse and joysticks
- Expansion and I/O ports
The standard became a success in Japan, with many big software houses such as Konami creating games for it. Outside of Japan, the adoption rate was low. In the USA, Microsoft actively pushed the PC compatibles, since they sold the operating system for it, and in Europe the MSX computers had stiff competition from Commodore and Atari. The Netherlands and Spain have the highest rates of MSX users in Europe.
MSX Cassette Pin Layout
The MSX Standard calls for all MSX computers to have a standard data-cassette port. This port transports the audio-in/out signals to and from the datarecorder and the computer has a relay-switch on board to turn the recorder on and off.
MSX Cartridge Connector
The MSX Cartridge system uses a 50-pin flat-edge connector to connect to the systems expansion bus. The cartridge slot maps into one of the main- or sub-slots.
TMS9918 Series Video Display Processor (99n8, 99n9, 91n8, 91n9)
The TMS9918 is a series of video display controllers (VDC) manufactured in 1979 by Texas Instruments, also refered to as 'Video Display Processor' (VDP). The TMS9918 and its variants were used in the ColecoVision, CreatiVision, Memotech MTX, MSX, NABU Personal Computer, SG-1000/SC-3000, Spectravideo SV-318, Spectravideo SV-328, Sord M5, Tatung Einstein, Texas Instruments TI-99/4, Casio PV-2000, Coleco Adam, Hanimex Pencil II, and Tomy Tutor.
Key Features:
- 256x192 pattern based color pixels per screen
- 16 different colors
- 8-bit memory mapped CPU interface
- No need for DMA, CPU can access VRAM
- 32 single color Sprites per screen (4 per scanline)
Variants:
- TMS9918A - 60Hz output, NTSC video
- TMS9928A - 60Hz output, YPbPr video
- TMS9929A - 50Hz output, YPbPr video
- TMS9118 - Different RAM than TMS9918A, otherwise identical
- TMS9128 - Different RAM than TMS9928A, otherwise identical
- TMS9129 - Different RAM than TMS9929A, otherwise identical
Zilog Z80 CPU Family
The Z80 quickly became popular in the personal computer market, with many early personal computers, such as the TRS-80 and Sinclair ZX80, using the Z80 as their central processing unit (CPU). It was also widely used in home computers, such as the MSX range, SORD, and the Amstrad CPC, as well as in many arcade games. Additionally, it was also used in other applications such as industrial control systems, and embedded systems. The Z80 was widely used until the mid-1980s, when it was gradually replaced by newer microprocessors such as the Intel 80286 and the Motorola 68000.
The Z80 microprocessor was developed by Zilog, a company founded by Federico Faggin in 1974. The Z80 was released in July 1976, as a successor to the Intel 8080. It was designed to be fully compatible with the 8080, but also included new features such as an improved instruction set, more powerful interrupts, and a more sophisticated memory management system.
The Z80 quickly became popular in the personal computer market, with many early personal computers, such as the TRS-80 and Sinclair ZX80, using the Z80 as their central processing unit (CPU). It was also widely used in home computers, such as the MSX range, SORD, and the Amstrad CPC, as well as in many arcade games. Additionally, it was also used in other applications such as industrial control systems, and embedded systems. The Z80 was widely used until the mid-1980s, when it was gradually replaced by newer microprocessors such as the Intel 80286 and the Motorola 68000. The design was licensed to Synertek and Mostek as well as the European SGS.
The Z80s instruction set is binary compatible with the Intel 8080, so that 8080 code such as the CP/M Operating System and Intel's PL/M compiler for the 8080 can run unmodified on the Z80. The Z80 had many enhancements over the 8080 such as 16-bit data movement instructions, block copy and block I/O instructions, single bit addressing of all registers, IX/IY offset registers, better interrupt system and a complete duplicate register file for context switching during an interrupt.
Source: WikiPediaVRAM: 4kB Sound Chip AY-3-8910A PSG Sound 3 sound channels + 1 noise Display Chip TMS9118NL VDP Display 256x192 in 8 colors Best Color 8 colors Best Graphics 256x192 in 16 colors Sprites 1 color, 16x16, 4/scanline, 32 total System OS MSX 1 BIOS
MSX BASIC Storage ROM Cartridge, MSX Tape connector Original Price ¥29,800